

SAP 2012 Consultation

HBF Part L Seminar

March 2nd 2012

Dyfrig Hughes Head of Technical Development National Energy Services

- Thermal bridging
- Hot Water
- Carbon emissions
- Regional weather
- Solar thermal & PV outputs
- Boiler efficiency and controls
- Heat Pumps

19 More junctions: 19 plus 23 = 42

Primarily junctions within a roof or room in the roof

SAP 2012 Reference Numbers

			Accredited	Default
	Ref	Junction detail	Ψ (W/m·K)	Ψ (W/m·K)
Junction	E1	Steel lintel with perforated steel base plate	0.50	1 1 00
s with an	E2	Other lintels (including other steel lintels)	0.30	
wall	E3	Sill	0.04	0.08
	E4	Jamb	0.05	0.10
	E5	Ground floor	0.16	0.32
	E6	Intermediate floor within a dwelling	0.07	0.14
	E7	Intermediate floor between dwellings (in blocks of flats) *	0.07	0.14
	E8	Balcony within a dwelling ^{b)}	0.00	0.00 *
	E9	Balcony between dwellings *(*)	0.02	0.04 *
	E10	Eaves (insulation at ceiling level)	0.06	0.12
	E11	Eaves (insulation at rafter level)	0.04	0.08
	E12	Gable (insulation at ceiling level)	0.24	0.48
	E13	Gable (insulation at rafter level)	0.04	0.08
	E14	Flatroof	0.04	0.08
	E15	Flat roof with parapet	0.28	0.56
	E16	Corner (normal)	0.09	0.18
	E17	Corner (inverted – internal area greater than external area)	-0.09	0.00
	E18	Party wall between dwellings *)	0.06	0.12
Junction	P1	Ground floor	0.08	0.16
s with a	P2	Intermediate floor within a dwelling	0.00	0.04
wall *	P3	Intermediate floor between dwellings (in blocks of flats)	0.00	0.04
	P4	Roof (insulation at ceiling level)	0.12	0.24
	P5	Roof (insulation at rafter level)	0.02	0.04

SAP Table K1 : Values of Ψ for different types of junctions

New table K1: External Walls

			iippioreu	Deruurt
	Ref	Junction detail	Ψ	Ψ
			(W/m·K)	(W/m·K
)
Junctions	E1	Steel lintel with perforated steel base plate	0.50	1.00
with an	E2	Other lintels (including other steel lintels)	0.30	1.00
external wall	E3	Sill	0.04	0.08
	E4	Jamb	0.05	0.10
	E5	Ground floor (normal)	0.16	0.32
	E19	Ground floor (inverted)		0.07
	E20	Exposed floor (normal)		0.32
	E21	Exposed floor (inverted)		0.32
	E22	Basement floor		0.07
	E6	Intermediate floor within a dwelling	0.07	0.14
	E7	Intermediate floor between dwellings (in blocks of flats) ^{a)}	0.07	0.14
	E8	Balcony within a dwelling, wall insulation continuous ^{b)}	0.00	0.00
	E9	Balcony between dwellings, wall insulation continuous ^{a)} _{b)}	0.02	0.04
	E23	Balcony within or between dwellings, balcony support		1.00
		penetrates wall insulation		1.00
	E10	Eaves (insulation at ceiling level)	0.06	0.12
	E24	Eaves (insulation at ceiling level - inverted)		0.24
	E11	Eaves (insulation at rafter level)	0.04	0.08
	E12	Gable (insulation at ceiling level)	0.24	0.48
	E13	Gable (insulation at rafter level)	0.04	0.08
	E14	Flat roof		0.08
	E15	Flat roof with parapet		0.56
	E16	Corner (normal)	0.09	0.18
	E17	Corner (inverted – internal area greater than external area)	-0.09	0.00
	E18	Party wall between dwellings ^{a)}	0.06	0.12
	E25	Staggered party wall between dwellings ^{a)}		0.12

Annroved Default

^{a)} Value of Ψ is applied to each dwelling

^{b)} This is an externally supported balcony (the balcony slab is not a continuation of the floor slab) where the wall insulation is continuous and not bridged by the balcony slab or its supports

Inverted junctions have a larger internal area than external. Only one inverted junction in SAP 2009:

E17 Ext wall corner inverted

There are 7 more inverted junctions in SAP 2012.

E19 Ext wall to ground floor inverted

E20 Ext wall to exposed floor normal

E21 Ext wall to exposed floor inverted

E23 Balcony penetrating wall insulation $\psi = 1.0$ W/mK !!!

E25 Ext wall to staggered party wall between dwellings

Junctions	P1	Ground floor	0.08	0.16
with a	P6	Ground floor (inverted)		0.07
a)	P2	Intermediate floor within a dwelling	0.00	0.00
	P3	Intermediate floor between dwellings (in	0.00	0.00
		blocks of flats)		
	P7	Exposed floor (normal)		0.16
	P8	Exposed floor (inverted)		0.24
	P4	Roof (insulation at ceiling level)	0.12	0.24
	P5	Roof (insulation at rafter level)	0.02	0.04

P6 Party wall to ground floor inverted

P8 Party wall to exposed floor inverted

			Approved	Default
	Ref	Junction detail	Ψ	Ψ
			(W/m·K)	$(W/m \cdot K)$
Junctions	R 1	Head		0.08
within a	R 2	Sill		0.06
with a	R 3	Jamb		0.08
room-in-	R 4	Ridge (vaulted ceiling)		0.08
roof	R5	Ridge (inverted)		0.04
	R 6	Flat ceiling		0.06
	R 7	Flat ceiling (inverted)		0.04
	R 8	Roof wall (rafter)		0.06
	R 9	Roof wall (flat ceiling)		0.04

No confidence factors:

i.e. no "plus 25% or 0.02 w/m²/K" added to psi values

No change to:

- default y = 0.15
- y value calculation

Hot Water

SAP 2009:

• Primary Pipework Insulated: Yes / No?

Hot Water

SAP 2012:

- **1. Uninsulated**
- 2. First 1m from cylinder insulated
- 3. All accessible pipework insulated
- 4. Fully insulated pipework

Hot Water

- Length of pipework not a variable – should it be?
- If so, primary and secondary

Hot water

Default heat losses from storage combi boilers increased

- Transportation of fuel
- Methane & nitrous oxide included
- 3 year not 5 year averages

Carbon emissions

- Same factor for import and export
- 15 year averages output as well

Fuel type	SAP 2009	SAP 2012
Mains gas	0.198	0.212
Grid electricity	0.517	0.522
Electricity exported to grid	0.529	0.522
Domestic heating oil	0.274	0.292
LPG	0.245	0.242
Wood chip	0.009	0.016
Wood pellets	0.028	0.039

Regional Weather

- External temperature
- Solar radiation
- Wind speed
- Heating season length

- Cooling no longer sensitive to region for Building Regulations
- Climate regions defined by postcode

Solar

- New procedure for calculating solar radiation from orientation and tilt
- Revised heat losses from solar thermal panels

- Manufacturers
 Declared
 efficiency option
 removed at As
 Built stage
- EU Eco Design
 Regulations –
 little impact on
 SAP

Compensators

Controls	
Controls	Programmer, room thermostat and TRVs
Interlock	Yes
Delayed start thermostat	Yes
Compensation	Enhanced load compensator
Burner control	None Load compensator Weather compensator
	Enhanced load compensator

Weather / enhanced load compensators only available from PCDF

Zone Control

- Removed benefit for smaller dwellings – area?
- Communicating TRVs to count as zone control

Heat Pumps

Lower default efficiencies

Heat Pumps

Туре	Current "typical" COP	Proposed "default" COP
GSHP + underfloor heating	3.2	2.3
GSHP + radiators	2.24	1.6
ASHP + underfloor heating	2.5	2.3
ASHP + radiators	1.75	1.6

- Two extra control options allowing two or more room thermostats
- Biomass system
 can now have
 negative CO₂ if
 FEE target met

PV on blocks of flats

- When connected to the landlords supply, current impact apportioned between flats
- Only carbon emissions will now be apportioned

- Fuel cost
- Primary energy factor

Water throughput assumptions amended – slightly reduces effectiveness

SAP Integrity Group

- DECC
- Independent
- Development
- Scientific integrity
- Green Deal too

SAP 2015?

- Overheating and space cooling
- Solar panels for heating
- Low energy lighting
- Heating patterns / temperatures
- Community heating database
- Low temperature heating

SAP 2015?

- Heating controls
- Review ventilation
- In use factors per technology
- DHW only Micro CHP
- Review occupancy factors

cSAP

Criterion 1: Predicted CO2 emission from proposed dwelling does not exceed the target

Dwelling Emission Rate (DER), kgCO2/m2.annum	15.19		
Emission rate from notional building, kgCO2/m2.annum	17.65		
Target Emission Rate (TER), kgCO2/m2.annum	Fuel F	Factor Consultat	ion Options
Target CO2 Emissions Equation Consultation Options	Full	Reduced	None
FEES + efficient services approach	25.87	21.25	17.65
Half-way point absolute target approach	18.93	15.6	13

www.2013ncm.bre.co.uk

Agree with approach to CO₂? ✓ 8 questions

Agree with approach to regional weather? ✓ Wind Speed ✓ Solar radiation based on orientation and pitch

Agree with approach to heating systems / boilers? ✓ 5 questions

Manufacturer description	See document "ManDecEvidence.doc"	
Test method		
HETAS approved		
Efficiency type	2009 SEDBUK	
Efficiency	89.3	%
Efficiency winter	11	%
Efficiency summer		%

Agree with approach to hot water and primary pipework ✓2 questions

SAP 2012

Consultation closes : 28th March

www.decc.gov.uk/en/content/cms/consultations/sap/sap.aspx